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A THEORETICAL INVESTIGATION OF LONGITUDINAL STMULITY OF AIRPLANES WITH FREE
CONTROLS INCLUDING EFFECT OF FRICTION IN CONTROL SYSTEM

By HARRYGEDENBEEQand LEON.ABDSTERNFIELD

SUMMARY

The relahn between the eleoaior hinge-momtmt parametw8
and tlw control forcesjor changtx in jorward 8peed and in maneu-
wr8 k 8hown jor 8everd v@?uesof static stability and e.?.ewtor
nuuw bahwe.

The sttiiiy of the short-period osdi?ati0m3 h 8hown m a
sm”es of boundaries giving the limit-s of the stable region in
terms of the elevator hinge+noment parameters. The @e&
Oj 8tIl&2 8tab#i@, &?8ViltO?’ 7M7118d Of h3Tt’iZ, d9ViZtOT f71JZ88
unbalunce, and airplaw dendy are &o ciwwidaed. Dynamic
instubiltiy ia likely to occur if there is maw unbalance of the
ehwator control 8y8tem combined with a & restoring ten-
denq (high aerodynamic balance). T/% in-stability can be
prevented by a rearrangement of tlw unbalanci~ weights which,
howeoer, involvtx an increme of the amount oj weight necmary.
It can also be prevented by the addition of V&OUSjrktion to
the elevator control system provided the airplane center of
gravi.iy ix not behind a certain critical position.

For high mluea oj the density parameter, which comspond
to high al.tiiudea oj $ight, the addition oj mocikraie amouti of
ticoIM jriction may be tibi-liziw even when the airplane ia
sta4iz.d?y 8tabb. In thi.8 eaae, hcrtxming the viacou$ jriction
makes the 08d.!atkn 8tabk?again. The wndiiion in whtih
tic0u4 jd~ c4Lumxdynamic h3k&%@ Of a 8t&~y 8h_zbk?
airplmu ti limited to a de.@.te range of hinge-momim.t param-
eter. It i8 8h0W?lthat, Wh&L VkOUS jricti.on cawtx inenea$-

ing 08dik.ti0n8, so.?idjriction @ produce steady 08cih$iGw
having an amplitude proportional to the amownt of friction.

INTRODUC’HON

The effects of aerodpmnic balance and mass &balrmee
of the elevator on the dynamic stability of the airplane are
discussed in a previous report on control-free stability (refer-
ence 1). It ma found theoretically in referenw 1 and verified
in flight (reference 2) that, if the elevator is too closely
balanced aerodywmioally and has a sticient amount of
mass unbalance (which tends to depress the elevator), in-
creasing oscillations of short period may occur. Other flight
tests (reference 3) showed, however, that mass unbalance of
the elevator control system improves the static stability of
rm airplane, that is, increases the slope of the curve of stiok
force against speed in level flight and of the curve of stick

0

force against normal acceleration in maneuvers. Subse-
quent work (reference 4) has indicated that a control surface
with positive floating tendency (tendency to float against
the relative wind), when used as a rudder, is effective in im-
proving control-free static stability. A theoretical analysis
(reference 5) showed that a rudder having a positive floating
ratio may, under the influence of solid friction in the control
system, build up steady oscillations of the airplane and
rudder. These steady oscillations have been observed in
flight tests (reference 6). These results suggested an investi-
gation of the behavior of an airplane equipped with an
elevator Iwving a positive floating tendency. This type of
elevator was not considered in any of the previous investi-
gationf3.

The purpose of the present report is to make a theoretical
analysis of the control-free longitudinal stability of an air-
plane, which takes account of this current trend toward a
positive floating tendency in control-surface design and
covers, in generil, a much wider range of parameters than
the investigation of reference 1. These parameters include,
for the elevator control system, restoring tendency, floating
tendency, mass unbalance (bobweight control), moment of
inertia, and viscous and solid friction and, for the airplane,
density and center-of-gravity position.

The method of analysis of dynamic stability is based on
the clas.sieal theory of Bryan and Bairstow extended to in-
clude movements of the controls and their couplings with
the airplane motions. Friction is treated in the same way
aa in the approximate method of reference 5, in which solid
hiction is replaeed by an equivalent viscous friction.

Before the analyais of dynamic stability is presented, some
discwion is given of the effect of the various parameters on
the elevator forces for trim and for acceleration-charac-
teristics considered important to flying qualities. The
stability of the short-period oscillations, with and without
friction in the control system, is then considered. The efFects
of weights added to the system to modify the static and dy-
namic stability are discussed. The trends tc be expected
are illustrated by a series of edculations and &arts based
on a typical airplane. The stability of the long-period
@hugoid) oscillations is not discussed because of its relative
unimportance.
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SYMBOLS

wing nspect ratio
tail aspect ratio
coefl!icients in stability equation
winfg span
elevator hinge-moment coefficient

H

()
; pVW&e

frictional hinge-moment coefficient
HI

(); pV%’.&

applied hing+moment c.mficient

v)

“t
airplane lift coefficient —

qsw
Iift coefficient of tail
pitohing-moment coefficient about airphme

canter of gravity
wing chord
elevator chord

()
diilerential operator ~

constant term in stability equation
stick force; positive for pull

CZF.

()
stick-force gradient in maneuvers ~

()
stick-form gradient for level flight ~

acceleration of gravity
hinge moment; positive when tends to de-

press trailing edge
mass moment of elevator about its l@e;

positive when tailheavy
mass moment of control stick about its pivot;

positive when stick tends to move forward
frictional hinge moment

moment of inertia of elevator about

w
moment of inertia of control stick about

pivot

rrdhs of gyration of airplane about Y-axis

its

its

distance between airplane eeriter of gravity
and elevator hinge

length of control stick
pitching moment about

gravity
mass of airplane

airplane center: of

number of cycles required for oscillation to
damp to half amplitude

normal acceleration per g of airplane duo to
curvature of flight path; accelerometer reocl-
ing minus component of gravity force

period of oscillation, seconds
dynamic pressure
elevator area
tail area
wing aren
distance in half-chords (2Vt/c)
time required for oscillation to drunp to hnlf

amplitude, seconds
time

forward velocity
change in forward velocity from trimmed w-due
weight of airplane
longitudinal force; positive forward
distance of center of gravity from aerodyna-

mic center; positive when center of grnvity
is ahend of aerodynamic center

normal force; positive downward
angle of attack
rmgle of attack at taiI
deflection of elevator; positive for downwnrd

motion of trailing edge
amplitude of elevator oscillation
angle of do~~~h

control gearing (0,/3,)
angle of pitch of airplane
deflection of control stick; positive for for-

ward motion of stiok

comphm root of stabili~ equation

real and imaginary parts, respectively, of A
airplanedensity parameter (m/PS&)
mass density of air

Whenever u, V, a, a,, 0, 8, Da, DO, D6, and D2a are used

aS subscripts, a derivative is indicated. For marnple,

ao~ Whenever a dot is used above aX,=% and CbDa=w6”

symbol, it denotes diflerent.iation with respect to time.

All angles are measured in radians.

METHOD OF ANALYSIS

Four degrees of freedom—forward speed, angle of attack,

anglo of pitch, and elevator deflection-are generally in-

volved in the problem of control-free stability. To eoch

degree of freedom, there. corresponds an equation of equilib-
rium between inertial nnd aerodynamic forces or moments.

By use of wind axes, tho four equations become, for level
flight,
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=mAv

=?nv(a-e)

MvAV+M.a+M@+MZ& +Mii+fM$.+Mi&=mk=’e

HVAV+H.CI+H;QH;U +H@”+HJ&+Hii =1.@ti.j +HAVU- Ve+L,e) -t-r[I.($.-e] +H,W- Vi]]

can be written in nondimensional form as

(–G+2A.PD)u–x=a +~o =0

)
CLU+(*+2A4D a –2Au@ =0

C%u+ (C.=+ C..=D+ C&ZaD9a + (Cr#–2Adi:PM + (c=a+c.Jl)& =0

Chu+ (C.-J-C~~=D-hD+ ch+=wai- (c.#+hD–h~~–iw)O+ (c.~~6’hD&’&m&=o

(1)

In applying equations (1) to dynamic stability, certain approximations maybe made. For instance, short-period oscil-
lations (of &e ord& of 1 see) involve negligible clmngea in forward speed, which may therefore be neglected in studying the
short-period oscillations. In fact, the period and damping of thcae oscillations can be obtained to a hid degree of accuracy

by using only the last three of the equations (1) and setting u=O.
Equations (1) then become

( )
~+2A@ a –2AU@3 . 0

(Utia+Cm.aD+CmdaD%Y + (catm-2Aw@:D)D0 + (cma+cm#)& =0

[C,a+ (c,~=–h)D+ U,&=ma+ [c.m+h– (hJ,+iJDIDO+ (C*,+ C@-i@&=O 1 (2)

By setting
\

~=wit De= (De]& & +@l

it can be shown (reference 7) that A must be a root of a quartic equation formed by writing

c.
& 2Auph

C.=+ C.D=A+ C.@mAz

cha+ (chD=–h) h+ C,d=N

The resulting stabili~ equation maybe written as

AX4+Bh’+CA2+EX+ .F=0

where A, B, C, E, and F are functions of the stability derivatives,

The study of the effects of diilerent parameters on the
control-free stability was made by a series of computations
for an average airplane having the characteristics given
hereinafter. The current trend toward a positive floating
tendency in control-surface design suggests the use of C,a, and

O~Jas the fundamental variables to be used in expressing
stability and control characteristics. The results are pre-
sented as a series of @es that show the relations between
Uaa, and 0fi6which, with the other derivatives tied, satisfy

the conditions for neutral dynamic stabili~ and neutral
static stability.

A curve for neutral dynamic stability is the boundaxy
dividing the region of increasing oscillations from the region

of damped osdlations and

=0

(3)

is obtained from Routh’s
discrirnimmt

BCE–Ah’-l?lP= O

The condition for neutral static stability is that

F=o

The stability equation (3) has four roots. A pair of
complex roots indicatca an oscillatory mode and a real root
indicatea an aperiodic mode. The real part of the complex
root determines the damping; the imagimuy part determines
the period of the oscillations. tilore specXcally, if there is
a pair of complex roots

X=:+iq
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the period in seconds is given by

p.&$

and the time in seconds b damp to half amplitude is given by

For an airplane at constant speed, there may be two
oscillatmy modes, there maybe only one oscillatory mode, or
the motion may be entirely aperiodic. In cases in whi~
there are oscillatory components, one of the oscillations may
be poorly damped and even beoome unstable.

The average airplane on which the calculations of this
report are based is of conventional design. The char-
acteristics of the airplane are

--------------------------- 6

?:::::::::::::::::::::::::::--------------------------- L 5
Lh lb~=~---._ --------------------------------------------- 3.3

-------------------------------------------------------
;-JSW----------------------------------------------------0.1:
l,, ft----------------------------------------------------- 2
sJst----------------------------------------------------0.55
At-----------------__----------_--_----_-----_-_---:---- 45

The basic stability derivatives and parameters obtained from
these airplane characteristics by methods shown in appendix A
are

CL=------------------- 43 c“m---------------- –15. 3

CL, ------------- ------ 3.8 Cn~e-__----__-__-- –& 9
.at

04$6 c,Da------------- 3. 22ck=t
%--------------------- o
CW8-------------------- –1. 64 c=g=------------- 23,2
Cam------------------- –o. 97 chum------------- –lo. 55C,=,

ckm (with no fi’iCtiOII)--- – 1

The following parameters of the airplane were varied:

P airplanedensity parameter
c ma control-fixed static-stability parameter

The following parameters of the elevator control system
were varied:
chat floating tendency

ch~ restoring tendency

ch~~ elevator-damping parameter

ie moment-of-inertia parameter of elevator about its
hinge

i, momentif-inertia parameter of control stick about
its hinge

h m~moment parameter of elevator control system
about elevator hinge

h, mass-moment parametar of elevator alone about its
hinge

As has been pointed out, the stability boundaries were
plotted, in most C&SW,in terms of oh=, and Chaas the varia-

bles of the coordinate system. k Ayzi.ng the effm% of
friction in the oontrd system, ch~ md CAD3 were wed * me

plotted vaxiables in some figures whereas C~a, and Chawere

used in others. The effect of the other parameters is found

by varying them one at a time, through a range of values, and
showing for each parameter a series of stability boundaries.

The size of the airplane, wing loading, and altitude are
m

combined in the parameter p, which is —. A variationpsd
in p thus could be due to a variation in size, wing loading,
or altitude, or any combination of these. The range of values
of ~ covered in the present report and some typical correspond-
ing values of wing loading,altitude, and size are given in the

fofiowing table: -

r I

-1-
VJlng

s (%&%)

4.17 40
126 40
37.6 40

I I

&nleveL-------------- !il
SWI level ------------- 7
W,m------------------ 7

I

The range of cm= and the corresponding center-of-gravity

positions are as follows:

L-C.m (fm%n of
mean wing

Ohord)

I-:m 0.0.5
0

.’m -.W

The ranges of values of the other pammeters, for a small
airplane (chord, 7 f t), are as follows:

H+
StIok force (lb)

b

At w level At Z3,CO0 ft

o
10 3$’ 1:)4

I dHld6
v

1

STATIC STARILITY AND RELATION TO CONTROL FORCES

The connection between the static stability and tho
airplane and control parameters is established to assist
in the interpretation of the results obtained hereinafter.
Equations (1) can be applied to static stability by setting
all terms containing D and D equal to zero and solving tho
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resulting equations simultaneously -for the variation in
forward speed with an applied elevator hinge moment.

As shown in appendix A, Ch= –~P” Inserting these

For level flight, 6’is also zero and the resulting equations are values in the expression for CjJu shows that Fti is independent
of forwaxd speed.

C.WF’+ a =0 The variation of control force with normal acceleration in

C%@- C..a+ Cm&e=O
a steady pull-up, with no change assumed in forward speed
(see reference 8), can be found from equations (2) by equating

C~tiu-l-C,.ai- C@e = – C~ to zero all terms containing D except lld. This procedure
Solving Kives implies that the normal acceleration is due entirely to.-

(2 chcm=cha
)

%“_ ~,a~% !Z
cu&ature of the flight path Do.

C*, – chch=cnl~+ c.~c5= ~ an applied hinge moment,
——. =

u Chacm,

Tho variation of stick force with fractional change in forward
CA
# a—2A.@

The equations becom~, for

=0
speed is

d~, H c@f%4 pS~~gAmp ch~— .
‘u=d(AV/V)=G= – laru ()

——
l,TCL u

If effects of slipstream on the tail are neglected, C%=O. I from which

Cb tiwpcb=cma+hc==cmt+ (?hmcLa(&6-ti@ch8 cm=– ch&umcL=
——.

D9 CL=C.8

If the normal acceleration is ng,

D8=~,

and

~ _dF,_
C,.; pv’wql

“ dn – 2PD81J “

‘% P&aw.—— —
DO 418

These formulas for FU and F%are equivalent to equation (1)
of reference 9 and equations (27) and (28) of reference 10.

The formulas indicate that the stick-force gradients F.
and Fmam dependent on most of the aforemedioned airplane
and elevator parameters. Figures 1 to 5 show the variation

of them stick-force gradients with the pWS.meteH chat, ch~,

Clm=, h, and P. The gradients are independent of speed,
although only within the limits of the assumptions made in
the analysis, namely, neglect of power and of compr~sibfity
effects. The gradient Fti can be used to get the stick force
for only a small change in forward speed because the stick
force is not directly proportional to the change in speed.
The stick force in a steady pull-up F=, however, is propor-
tional to the normal acceleration provided the control de-
flection is not so great that the basic assumption of linearity
is violated.

The line Fti=O is the boundary for true static stability—
that is, Fti=O is the condition for zero variation in stick
force with forward speed in steady @ht. This condition
is the same as that obtained by setting F= O, where F is
the constant term of the sixth-order stability equation
obtained from equations (l). On subsequent figures it is

called the divergence boundary. The line F~=O is the
boundary for apparent static (or maneuvering) stability and
is the condition for zero variation in stick force in a steady
pull-up. This condition for Fn=O is obtained by setting
F=O in the approximate stability equation (equations (3)),
which is for three degrees of freedom (a, Do, and 6,). On
the unstable side of Fu= 0, a slow divergence occurs that is
noticed by the pilot as an unstable variation of stick force
with forward speed. The stick force due to normal accelera-
tion in a pull-up is shble, however, uoless the conditions are
such that the airplane is operating on the unstable side of
FX=O.

Figures 1 to 5 indicate that the parameters have the same
effect on Fu and F. except that the altitude affects only F..
They show that the stick-force gradients on an airplane of
given tail size and center-of-gravity position may be in-
creased by making the floating tendency Chatmore positive

or by mass unbalancing the elevator control system to
depress the elevator (make it tailheavy). The eflect of the
restoring tendency ch~ on the stick-force gradients depends

on the relative position of the center of gravity and the
aerodyn tic center. If the center of gravity is ahead of
the aerodynamic center (airpkme stable with controls fixed),
increasing the magnitude of Cha increasea the stick-force

gradients. If the center of gravity is behind the aerody-
namic center, this effect on Fu is reveceed; the effect on F.
is not revemed, however, until the center of gravity is well
behind the aerodynamic center (in this case, about 0.05c at
sea level and 0.02c at >0,000 feet). If CA8=0, the stick

forces are independent of the position of the airplane center
of gravity.
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Increase in altitude will either increase or decreme F.,
depending on the hinge-moment parameters. The solid
line in figure 5 is the locus of values of C’,=,and C,, for which

F. is independent of altitude. For points to the left of this
line, F- decreases with altitude; for points to the right of
this line, Fe increases with altitude. This line is determined
by the relation

which, for the case of figure 5, becomes

C,=,= I.50C,8

Another method of increasing the stick-force gradient in
level flight Fti consists in applying a constant hinge moment
tQ the elevator by means of a spring or bungee. The effect
of the spring on the gradient F. is due to the derivative
C*Uwhich depends in the same way on the constant hinge
moment, whether it is caused by a weight or by a spring. A
bungee, which tends to depress the elevator, will therefore
increase the stick-force gradient in level flight Fu. The
effect of the bungee on the stick-force gradient in accelerated
flight F. will be zero because its action depends solely on
changes in forward speed. Its effect on the shorhperiod
oscillations will be zero for the same reason.

DYNAMIC STADIL~Y

NOPIU~ON m CONTROLSYSTEM

The stability of the shorbperiod oscillations without
friction is shown in figures 6 to 11, which also show the
boundaries for true static stability (divergence boundaries).
Figure 6 is an example of a more nearly complete presmtation
of the stability data than subsequent figures because it
shows the variation of damping and period of oscillation
with the h@ge-mOmt3nt pm~eik!~ chat and Chd for certain

fixed values of the other parametm. The damping, which
is proportional to (, increases with the magnitude of Cb6.

The period, proportional to $, demeases as Chat increases.

Another way of presenting this additional stability data is
shown in figure 7, which gives the number of cycles the oscil-
lation performs before it damps to half amplitude. It is
clear from figure 7 that the oscillation is very well damped
unles the restoring tendency is close to zero. In this parti-
cular case, only one oscillatmy mode exists. Inasmuch as
there are only three roots in this case (because G and &= O),
the other root is always real and is of no particular signifi-
cance in dynamic stabili@-. b cases in which an additional
oscillatory mode exists, it is always stable.

The effect of center-ofgravity position on the stability of
the shorhperiod oscillations is shown in figure 8. The shift
in the dynamic-stability boundary, for the comparatively
large shift in center of gravity shown, is practically negligible.

l~any of the subsequent figures, in which zero static stability
is assumed to facilitate computation, therefore are did for
airplanes having a margin of static stability.

The effect of moment of inertia of the elevator control
system on the dynamic stability is shown in figure 9, which
gives typical values of the moment of inertia. The effect is
slightly destabilizing especially for high values of chat. The

destabilizing effect of the moment of inertia of the elevator
is greater than that of the moment of inertia of the control
stick. Because the accuracy gained by including mommt
of inertia is small compared with the swing in labor gaimd
by neglecting it, moment of inertia of the elevator control
system was set equal to zero in the subsequent calculation.
As a result, the stability equation becomes a cubic and sub-
sequent figures are somewhat unccmservative.

The effect of density parameter P on the dynamic stability
is shown in figure 10. Increase of whas a slight destabilizing
effect.

As has been shown, mass unbalance of the elevator control
system improves the static stability (fig. 4). The ~ect on
dynamic stability is unfavorable, however, as shown in
iigu.re 11. The value of mass unbalance shown corresponds
to a bobweight that is located at the airplane center of
gravi@- and requires a balancing pull of 37 pounds on the
control stick of a pursuit airplane at sea level. Incrmsing
oscillations occur if the aerodynamic balance is too high
(low magnitudes of C,J), especially for negative valuea of O,=.

The effect of the location of the bobweight is shown in
iignre 12. Each curve represents a difTerent armngoment
of bobweights and all arrangements give the same stick
force. The solid line corresponds to a weight at the air-
plane center of gravity (for practical purposes, at the control
stick). The ahorkdash line corresponds to a weight at the
elevator. The Iong-daah line corresponds to two weights—
one at the elevator, which tends to make it noseheavy; the
other at the control stick, which gives the elevator a sufE-
ciently powerful tailheavy moment that the resultant stick
force is the same as with the single weight. In the particu-
lar case represented, the noseheavy moment due to the
weight at the elevator is equal to the tailheavy moment due
to both weights. Moving the single weight from the con-
trol stick to the elevator has a large destabilizing dfect,
Overbalancing the elevator while the stick” force is kept
constant has a considerable stabilizing effect. This method
of preventing instability has the disadvantage, however, of
increasing the total amount of unbalancing weight required.
In the case &own, the weight is increased to three times its
original size. Another disadvantage is the rearward shift in
center of gravity of the whole airplane due to additional
weight at the elevator. (See airplane parametem given in
“lMethod of Analysis.”) The destabilizing effect of the in-
creased moment of inertia associated with the added weights
was found to be very small, especially for negative floating
tendency.
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EFFECT OF VISCOUS FEICTION IN CONTROL SYSTEM

In the pyeceding section, n constant value of the elevator-
damping parameter O*D*was assumed. This value was due

only to aerodynamic damping. The effects of viscous fric-
tion in the elevator control system are obtained by consider-
ing Oh~Jas an additional variable. This variable can be

introduced, as in the preceding section, by showing a series
of boundaries in the oh=~o.~ plane for vaxious value9 of

oh~d. The general nature of the effect of friction is shown

first, however, by presenting boundaries ti the Chaoh=$

plane with u~=, constant and some other parameter varied.

This method of presenting stability boundariw makes it
easier to show the effects of other parametem such as air-
plane center-of-gravity position and density when friction
is introduced.

Tho effect of viscous .fkiction on the dynamic stability,
for various conditions, is shown in figures 13 and 14 for
P=12.5 and P=37.5, respectively. Figures 13(a) and 14(a)
refer to the mass-balanced elevator control system; figures
13(b) and 14(I)) refer to the tailheavy elevator control
system considered in the preceding section. It is shown that,
if the airplane center of ~gravity is ahead of a certain point,l
the instability caused by the unbalanced elevator can be
removed by adding viscous tiction to the control system.
This critical center-of-gravity position is behind the aero-
dynwnic center, and its distance from the aerodymunic
center decreases as the density parameter P inoreases.
When the center of gravity is behind this critical position,
viscous friction has a destabilizing effect. These opposite
effects of viscous friction are shown in the Chatoh~ plane in

figures 15 and 16. When the center of gravity is slightly
ahead of this critical position, the eilect of viscous friction
dependa on its magnitude and also on the value of CkJ. The
addition of a small amount of viscous friction is destabi-
lizingbut larger amounts are stabilizing. If the aerodynamic
balance is sufficiently high (C,J=0) and the viscous friction
lies in a certain range, increasing oscillations will ooour.
In figure 14(b), for example, if z=...= –0.OIC and C~a= –0.05,
the oscillations will be unstable when the elevator-damping
parameter is in the range from –2.5 to –76. ~ (?ha is

more negative than –0.086, no amount of elevator damp-
ing ean cnuse increasing oscillations. As the center of

gravity moves forward, the destabilizing @ect of elevator
damping becomes less and fially disappeam.

The effect of the density parameter P can be seen by com-
paring figures 13 and 14. The critical center-of-gravity
position approaohcs the aerodynamic center as p inoreases.

IMm thfsrqmt was wdttm,Me pdntW hnfonnd h h where ~% somet~a mud
the stick-llxed manouvm pcdnL

When ~= 12.5, elevator damping always has a skbilizing
effect provided x=... is positive. When P=37.5, elevator
damping may be destabilizing over a small range of C*Da
and ChJeven when ~a .C. is positive (0.05c).

When the center of gravity is slightiy ahead of the afore-
mentioned oritical position (which is behind the aerodynamic
center), the conditions under which elevator damping may
cause dynamic instability may be advantageously repre-
sented in the Cfi=~Ck8plane. If a series of stability boundaries

are drawn in that plane for various values of elevator damp-
ing, they will all be con.i?medto a region bounded by a line
that will be called the boundary of complete damping. An
illustration of two methods of constructing this boundary is
given in figure 17. H a series of boundaries in the Ch=,cfia

plane are drawn for various values of the damping, the com-
mon tangent of all these curves is the boundary for complete
damping. This boundary ean also be drawn by plotting the
minimum values of cfidobtained from plots of the type shown

in figures 13 and 14 against corresponding values of chat.

The region in the Ckat(?kaplane between the boundmies for

complete damping and increasing oscillations is the region
where the addition of viscous friction to the elevator control
system may cause dynamic instabili~.

That a boundary for complete damping cannot bo shown
for K= 12.5 if the airplane is statically neutral or stable (z=...
is zero or positive) maybe seen from figure 13. It is possible
however, to show a boundary for complete damping under
these conditions for P=37.5. Fi.-e 18 shows these bound-
aries for x=...= O and for the critioal value X=.c.=— 0.017c,
for both a mass-bakmced elevator and a mass-unbalanced
elevator. The boundaries for increasing oscillations and
divergence are also shomn. For the case of the ma~balanced

elevator (A= O), the boundary for complete damping is a

straight line through the origin and therefore corresponds
to a tied ratio of the floating and restoring tendencies,
or floating ratio. Elevator mass unbalance decreases the

region of complete damping.

~FECT OFSOLmFRICTIONIN ELEVATORCONTROLSYSTEM

The boundary for mmplete damping has an importmt
bearing on the effect of solid friction on dynamic stability.
In order to calculate this effect, the solid friction is replaced
by an equivalent viscous fiction that would dissipate energy
at the same rate. This condition gives an equiwdent

4 c,,
Ckm=; --J (4)

for a sinusoidal motion of the elevator with amplitude T and
angular frequency q.
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FI13UEB 17.-MI3thcd of constructing bmmdnry for complete dmnplng.

It can be shown that if viscous friction is destabilizing, as
in figures 16 to 18, solid friction may lead to steady oscilb
tions having an amplitude proportional to the amount of
friction. Suppose an oscillation is started with amplitude
and frequency which result in an equivalent Cbm that would

cause increasing oscillations. Let this condition be repre-
sented by point 2 in figure 19. The amplitude of the oscil-
lations would then increase untfi the equhdent 6’,Da de-

crensed to the value that would result in neutrally damped
oscillations, represented by point 3 in iigure 19. If the
initial amplitude is so low that the equivalent viscous fric-
tion is in the stable region, as shown by point 1, the oscilla-
tions will die out completely. If the fitial amplitude is so
high that the oscillations are stable, represented by point 4,
the amplitude will decrease until it reaches a constant value,
when the equivalent Cbm is again represented by point 3.

The value of Ch~8at point 3 then determines the amplitude

of the steady oscillations. By solving formula (4) for ~ the
amplitude of the steady oscillation is obtained as

4 0$1
3=; q

vihere q and Chm axe the values at point 3. This formula

shows that the amplitude is proportional to the amounL of
solid friction.

The foregoing analysis shows that tbe region in the cba,c~t

plane between the boundary for increasing oscillations rmd
the boundary for complete damping is the region where
steady oscillations may occur because of the influenco of
solid friction in the control system. All the remarks in the
preceding section concerning the boundary for complete
damping with viscous friction consequently apply to the
boundary for steady oscillations with solid friction, inasmuch
as these two boundaries are the same, within the limits of
the assumptions involved in the use of the concept of equi-
valent viscous friction. Steady oscillations due to solid
friction will not occur on a statically neutral or stable air-
plane, for instance, unless P is very large (corresponds to a
high altitude). Even in that case, the possibility of sbmdy
oscillations exists only for a comparatively small range of
floating ratios. If tho airplane is statically unstable by a
sufficient amount, however, steady oscillation may e.ust
over the entire range of floating ratio.

Some calculations of the amplitude of the steady oscilb
tioms, expressed in terms of normal acceleration per unit
frictional force as felt at the control stick, were made by the
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(a) h-lo.
(b)h=O.

FIGUEE lS.-Bonndmiw for mmplete dmnplng, fnrxemfng rucillatiorq and dIvargemw.

Jl=w’.h

method of appendix B. The results arepresentedin figure 20,
which shows lines of constant amplitude in the Chatcha

plane for an airplane with the center of gravity at the critical
position referred to in the preceding section. Steady oscilla-’
tions will therefor occur throughout the entire region where
stability exists in the absence of friction. The amplitude
is smdh?st for high vrdues of Oh=tcombined with high

vfduea Of Ufi$.
CONCLUDING REMARKS

The stick-free static stability of a conventional airplane
may be improved by making the elevator floating tendency
more positive or by mass-unbalancing the elevator control
system to make the elevator tailheavy. Increasing the
restoring tendency also has a favorable effect provided the
airplane is stable with stick fixed. If the restoring tendency
is zero, the stick-free static stability is independent of air-
plane center-of-gravity position.

The dynamic stability with frictionleas controls depends
chiefly on the restoring tendency chband on the mass balance

of the elevator control system. If the elevator control
system is maw unbalanced (elevator made tailheavy) by an
offset weight at the control stick and if the restoring tendency
is too low, increasing shorkperiod oscillations may result.
This condition can be remedied by the use of two additional
weights-one at the elevator making it noseheavy, the other
at the control stick making the elevator sticiently tailheavy

that the combined effect gives the elevator the desired amount
of tailheaviness.

The addition of viscous friction to the control system will
prevent dynamic instability provided the airplane center of
gravity is forward of a critical position which is behind the
aerodynamic center and approaches it as the value of the
density parameter p increasea. If the airplane center of
gravity is behind this critical position, viscous friction will
have a destabilizing effect, no matter what the hinge-
moment parameters are. If the center of gravi~ is slightly
ahead of the critical position, viscous friction may be de-
stabilizing for a limited range of values of viscous friction and
the hinge-moment parameters. A low restoring tendency
and a high positive floating tendency will tend to cause this
dynamic instability. When p is very large (high altitude),
this condition of steady oscillations can occur even if the
center of gravity is ahead of the aerodynamic center.

The presence of solid friction in the control system may
cause shor~period steady oscillations under the conditions
for which viscous friction is destabilizing. The amplitude of
the oscillations is proportional to the amount of friction
present.

LANGLEY NIEMORIAL AERONAUTICAL LABORATORY,
NATIONAL ADVISORY COmmEE FOR AEROZiAmCS,

LANGLEY FIELD, VA., December ,?S, 1943.
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APPENDIX A

EVALUATION OF STABILITY DERIVATIVES

—The total hinge moment aoting on theDerivative Ch.
elovrttor maybe expressed as

H= (C,~ai-C@ ~ PV&C.+Hd

&=~H~- (~b=ff+ O@PvL%C.

At trim H=O, therefore,

Derivative &=.-The parametir cm= may be obta~ed

from wind-tunnel measurements or, if the position of the
aerodynamic center of the completa airplane is bow-n, may
be calculated by tho formula

cm==—CL;X....

Derivatives Om~=and C~&a.—The derivativ~ o~~. ~d
~n~,= arise because of the lag between the change in angle
of attaok at the wing and the corrwponding downwaah at
the tail. It is assumed that the dowmvash at any instant t

depends on the ~gle of att~ at the ~tant t–#J tie differ-

onco being the time required for the air to move horn the
wing to the tail. If a=j(t), ti relation may be expressed
as

e=,.j(t–At)

where

Af=)

Now,

f(t–At) =j(t)–At7(t) +~j’’(t) – ..-

Henoe,

[

(At)2 ;
~=~ a— At&+~ — . . .

1

or, bwme &=2$ Da and Z=4~ ~a,

.$=E=
(

ff-lhDa+~ pa— . . .
)

and, beoause a,= a—e,

a,=
(

a—e= ci—lh ZW-TI pa– . . .
)

and

‘CY(l-6a)+db Da—e~D~+ . . .at—
.

The part of the pitohing-moment coticient contributed
by the tail is

C.=– CLta,~~~ al

=–(7L

[

lb~
‘Et a(l —6=)+dh Da—& ~~a . . .

tat 2 Sw .1
The kg e&otiv~y introduces cltivativ~ Cm==, cm+=, . . . -

The tit two of these derivatives are

C=D==–C.,=, ; + %
w

and

12 s,
c.@== cLt=, ~ ~ ‘“

347
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Derivatives Cb=, Ck~=, and ch~.. —The derivatives &

chD=, and Ch+a maybe obtained from

C~=Ck~,a,

la~ ~
=Cka,(l –da-l- chedb Da– c~at~ ~ D a

which giVe-S
oh==o,u,(~ ‘%)

C,.== chatdh

Ch$==—C,U’6f

Derivative C~m.—The pitching moment due to pitching

is made up of parts: due to propeller, wing, fuadage, and
horizontal tail. The contribution of the tail is by far the
largest and can easily be calculated.

If the airplane is rotat@g with angular -velocity ~, the

~cre= in ~le of attack at the tail is L* $ which results

in an increased lift on the tail given (in coefficient form) by

The resultant pitching-moment coefficient is

2V
and expressing i as ~ DO and 2? as lb gkes

lhz 8,
CTR=-CLtat ~ g DO

w

The contribution of the wing depends on the assumed
axis of rotation (center of gravity) but a fair averqge value
will be obtained by assuming that the center of gravity is
at the wing quarter-chord point. This assumption gives a
value

Cm= –~ De

The total pitch@-moment coefficient due to pitching
therefore is

COMMITTEE FOR AERONAUTICS

11s,
o~ti= ‘;–CL,=, ; ~

w

The derivative Cmamay be measuredDerivative Cm,.—
directly in a ~d tunnel or may be computid from wincl-
tunnel data on the value of CZ,8for the horizontal tail by

means of the formula

c =_(-JL h&.
‘8 162 L%

Derivative Cmm.—The derivative C.~8 may be computed

from

c=~=-[(%)A+cL.t(%
‘hwe(%).‘n’(39 may be obtained from figure 1

of reference 11, which is based on thin-wing potential-flow
theory.

Derivative 6’km.-Thf3 derivative chD~k given by

In the absence of viscous friction in the elevator control
system, the value of ChDa may be computed from

chD8=
-Ka.+c%($%x ‘A’)

‘hwe(a and(%).may be obtained from figure 1

of reference 11.
If a dashpot, which has a damping constant of lK pounds

per foot per second and moves a distance of Q feet per
radian of elevator deflection, is inserted in tlm control
system,

The total value of Chm is the sum of
(A2).

(A2)

equations (Al ) and

Derivatives oh=, and CbJ.—The derivatives Cka~and 6’h6

can be calculated by thin-wing-section theory but the
results are of doubtful accuracy because of three-dinmnsional
and boundary-layer effects. It is therefore best to obtain
these derivatives from wind-tunnel tests.



APPENDIX B

CALCULATION OF NORMAL ACCELERATION DUE TO OSCULATING ELEVATOR

Tho normal acceleration of the airplane, which IS equal to Il(a-tl) in nondimensional units, can be calculated from

where q k the angular frequency of the elevator.

The fraction in equation (I31) can be reduced to an ordinary complex number and the modulus of this number is the
maximum amplitude of the steady oscillation. The value can be converted tQ physical units by the formula

Normal acceleration per g 41~ D(a–o) 4
Stick friction in pounds

.—~ —
ps&cg ~ WzD8

where OhDh is the value of elevator dampirg required for the condition of neutral dynamic stability.
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